John Jifon

Nutrient Removal by Vegetable Crops: s. Texas

John Jifon

Texas AgriLife Research, Texas A&M System, Weslaco, TX jljifon@ag.tamu.edu

Nutrient Removal by Vegetable Crops: s. Texas

John Jifon

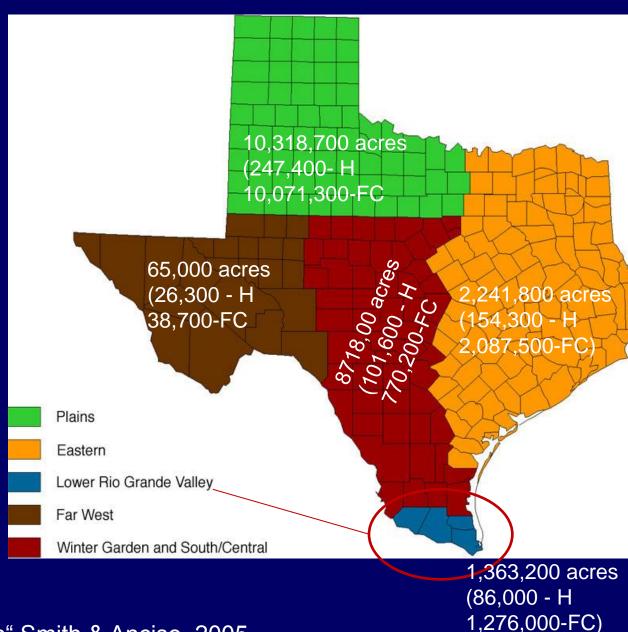
jljifon@ag.tamu.edu

The Problem

The role of fertilizers on quality and functional properties has not been well researched. Quality & functional properties major determinants of consumer preference.

 Fertilizer recommendations for many fruits and vegetables have not changed over decades. Improper fertilizer management practices account for some of the production limitations of the new high-yielding & specialty varieties

Production Regions


Lower Rio Grande Valley

AgriLIFE RESEARCH

Texas A&M System

The most intense horticultural production within 4 Counties:


- Cameron,
- Hidalgo,
- Willacy,
- Starr

"The Crops of Texas" Smith & Anciso, 2005

AgriLIFE RESEARCH

Major Vegetable Crops

Fruiting Vegetable Crops: (34,000) 6,000 acres

> Cole Crops 7,300 acres

Cucurbits/Melon Crops: (84,000) 19,000 acres

Bulb Crops: (17,000) 11,000 acres

Root and Tuber Crops: (34,000) 6,000 acres

5.

Major Field Crops

Sorghum 900,000 acres

Cotton 250,000 acres

Corn 80,000 acres

Citrus 28,000 acres

Sugarcane 44,000 acres

Previous research:

Improving quality through fertilizer management

- Supplemental foliar K during fruit development can improve quality traits
 - Sugar content
 - Nutritional & Health Promoting properties (Phytonutrients)
 - Texture & shelf life
- Four aspects:
 - ✓ Timing Post-flowering
 - ✓ Source K₂SO₄, KTS, K-Metalosate
 - ✓ Placement soil vs foliar
 - □ Rate??

Previous research:

Improving fruit quality through fertilizer management

 Supplementing soil-derived K with foliar K applications during the fruit development/maturation stages can improve fruit quality parameters of muskmelons grown on calcareous soils.

- Consumer Preference Traits: Sugar content
- Nutritional & Health Promoting properties (Phytonutrients)
- Retail Traits: fruit texture & shelf life
- Four aspects:
 - TIMING Post-flowering
 - SOURCE K2SO4, KTS, K-Metalosate
 Placement soil vs foliar
 - Placeme
 Rate??

 Fertilizer guidelines for optimizing yield may not be the same as those for produce quality. Need to reassess soil K management strategies to improve fruit quality especially on calcareous soils.

- ±Zn + source (Zn SO4, Zn-EDTA) effects on grain yield vs quality (Dr. I. Cakmak)
- Foliar K studies: K₂SO₄, KTS, K-Metalosate

Emerging Questions

□ How much K is required to assure minimum

quality standards?

How much is taken off fields with produce?

✓ Timing – Post-flowering
 ✓ Source – K₂SO₄, KTS, K-Metalosate
 ✓ Placement – soil vs foliar
 □ Rate??

Little information available for nutrient removal by vegetable crops.

Objectives

Near-term Objectives:

Estimate nutrient (N, P, K, S, Ca, Mg,) removal amounts in relation to different yield expectations in sites with contrasting soil types in S. Texas.

 Timing of nutrient uptake and distribution among harvested & non-harvested biomass

Long-term Objective:

Enhance produce quality though fertilizer management.

Methods - sites

Commercial fields with contrasting soil types:

Locations

Edinburg -	Brennan fine sandy loam
------------	-------------------------

- Mission Delfina fine sandy loam
- Santa Ana Hidalgo sandy clay loam
- Weslaco Harlingen clay

Cultural Practices

- Raised beds
- Plastic mulch
- Subsurface drip irrigation
- Fluid fertilizers through drip
- Growing season: early February mid May

General Soil Chemical Properties

	рН	NO ₃ -N	P	K	Са	Mg
Average	8.2	64.3	ppm 63.8	~586.6	~10,166.7	~522.4
Critical Limits	6.5-7.0		50.0	175	180	50

Procedures

Pre-plant soil analysis
Tissue mineral analyses
Fruit Yield & Quality (fruit size, dry matter, Brix)
Nutrient removal estimates

Pre-plant soil properties

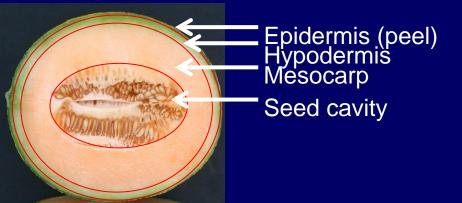
	Soil							
	Texture	Soil Organic	рΗ	NO ₃ -N	Р	K	Ca	Mg
		Matter (%)				(mg·kg ⁻¹)		
				200)9			
Edinburg	light	0.89	8.2	33.4	22	558	2805.6	297.3
Mission	light	0.97	8.1	126.5	39	385	2805.6	537.8
Santa Ana	heavy	1.21	8.3	19.5	46.5	779	13807.8	507.3
Weslaco	heavy	2.01	8.3	78	59.8	624	17247.8	747.3
				20 1	0			
Edinburg	light	0.96	7.1	37.2	56.1	410.6	2524.3	307.1
Mission	light	1.08	6.9	19.8	44.3	463.1	2915.3	601.3
Santa Ana	heavy	2.03	8.1	64.2	78.6	801.6	12602.7	584.2
Weslaco	heavy	1.13	7.9	45.7	86.2	719.4	17834.9	699.2
Critical limi	t		6.5	-	50	175	180	50

Tissue (leaf) characteristics

		Edinburg	Edinburg	Weslaco	Weslaco	Sufficiency
Nutrient	Unit	<u>12" vine</u>	Pre-harvest	<u>12" vine</u>	Pre-harvest	range
N	(%)	4.2	2.3*	5.1	2.9*	2-5
Р	(%)	0.39	0.21*	0.56	0.29*	0.3-0.5
K	(%)	4.3	1.1*	4.9	1.3*	2-5
Ca	(%)	3.5	3.2	4.1	3.8	2-5
Mg	(%)	0.32	0.49	0.42	0.43	0.3-0.5
S	(%)	0.33	0.35	0.42	0.48*	0.2-0.5
Fe	ppm	136	152	185	179	40-100
Mn	ppm	42.8	44.2	35.7	66.3*	20-100
Zn	ppm	26.4	28.5	44.6	58.2*	20-60
В	ppm	26.1	27.3	38.7	51.3*	20-80
Cu	ppm	6.8	7.1	7.3	8.4*	5-10

Fruit yield & quality

	Fruit Yield	Fruit TSS
	tons/ac	%
	20	09
Edinburg	9.5b	8.9b
Mission	9.8b	9.6b
SantaAna	12.4 a	11.2 a
Weslaco	10.2a	11.9a
	20	10
Edinburg	10.5a	9.7a
Mission	11.7a	10.8a
SantaAna	12.6 a	12.2a
Weslaco	12.2 a	11.1a


Nutrient removal estimates

	Fruit Yield tons/ac	Ν	Р	K Ibs/ac	Са	Mg
				2009		
Edinburg	9.5b	18.4c	7.0c	44.1c	24.7b	2.3b
Mission	9.8b	21.8bc	8.3bc	52.3bc	27.6b	2.7b
SantaAna	12.4a	37.7a	14.4a	90.5a	40.4a	4.7a
Weslaco	10.2a	31.3ab	11.9b	75.0b	38.9a	3.9a
				2010		
Edinburg	10.5a	47.0b	9.2b	72.3c	27.1b	2.5b
Mission	11.7a	55.8b	10.9b	85.8b	30.6b	2.9b
SantaAna	12.6 a	73.5a	14.4a	113.1a	44.4a	5.0a
Weslaco	12.2a	72.7a	14.2a	111.8a	42.4 a	4.3ab

Comparison with available data

	Ν	P_2O_5	K ₂ O	Ca
¹ IPNI	0.08	25.0	140.0	
² Knott's	95.0	17.0	120.0	
?Europe?	45-107	13-22	45-178	44-64
Edinburg	47.0b	9.2b	72.3c	27.1b
Mission	55.8b	10.9b	85.8b	30.6b
Santa Ana	73.5a	14.4a	113.1a	44.4a
Weslaco	72.7a	14.2a	111.8a	42.4a

¹IPNI, 2001; ²Maynard and Hochmuth, 2007- Knott's Handbook

Removal Estimates: Spinach & Sweet Onions

Crop	Location	Soil	Yield	Ν	Р	K
		texture	tons/ac		lbs/ac	
Sweet Onion	Weslaco	Heavy	18 a	87 a	26a	109a
	La Feria	Light	15 a	76 a	16b	95ab
Spinach	Weslaco-1	Light	8 a	68 b	9c	88b
	Weslaco-2	Heavy	11 a	72 ab	14b	96a

Summary

Removal amounts vary by year and siteinteractions between soil, plant and weather factors

Related to yield levelhigher yields higher removal amounts

The current removal data are higher than those available in the literature...

.... higher yield expectations

Related studies

Supplemental Foliar K - Pink Grapefruit

Use of polymer additives to improve uptake of foliar K

□ Improving P uptake efficiency: AVAIL[™]

THANK YOU

Schuster Farms, Inc. San Juan, TX J&D Produce Edinburg, TX

A&W Produce

-

INTERNATIONAL PLANT NUTRITION INSTITUTE